Discontinuous Galerkin Methods for an Elliptic Variational Inequality of 4th-Order
نویسندگان
چکیده
Discontinuous Galerkin (DG) methods are studied for solving an elliptic variational inequality of 4th-order. Numerous discontinuous Galerkin schemes for the Kirchhoff plate bending problem are extended to the variational inequality. Numerical results are presented to illustrate convergence orders of the different methods.
منابع مشابه
Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities
We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...
متن کاملA Posteriori Error Estimates for Discontinuous Galerkin Methods of Obstacle Problems
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed.
متن کاملMultilevel Preconditioning of Elliptic Problems Discretized by a Class of Discontinuous Galerkin Methods
We present optimal order preconditioners for certain discontinuous Galerkin (DG) finite element discretizations of elliptic boundary value problems. A specific assembling process is proposed which allows us to use the hierarchy of geometrically nested meshes. We consider two variants of hierarchical splittings and study the angle between the resulting subspaces. Applying the corresponding two-l...
متن کاملA multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems
A. We construct optimal order multilevel preconditioners for interior-penalty discontinuous Galerkin (DG) finite element discretizations of three-dimensional (3D) anisotropic elliptic boundary-value problems. In this paper we extend the analysis of our approach, introduced earlier for 2D problems [20], to cover 3D problems. A specific assembling process is proposed which allows us to cha...
متن کاملDiscontinuous Galerkin methods for solving a quasistatic contact problem
We consider the numerical solution of a nonlinear evolutionary variational inequality, arising in the study of quasistatic contact problems. We study spatially semi-discrete and fully discrete schemes for the problem with several discontinuous Galerkin discretizations in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error...
متن کامل